Major Characteristics for Medical Power Supply

Medical environments are known for its omnipresent risk for both vulnerable and healthy people. To ensure the utmost safety, the design of Medical Power Supplies is monitored by the strictest quality exigences and safety regulations.

As the heart of any electrical medical device, the medical power supplies must comply with the highest standards of performance, safety (IEC 60601) and reliability. Criteria such as MOPP, MOOP, low leakage current, EMC must be taken into consideration during the development stage.

As a result, Medical Power Supplies are equipped with higher levels of insulation and superior EMC performance, and we can distinguish one medically approved Power Supply from other electronics components by its exigent protection level, its high reliability and its extended life cycle of components.

How to choose your Medical Power Supply?

As the keystone of one medical system, it is extremely important to select a safe and reliable Medical Power Supply. To choose the most suitable Medical Power Supply for the Medical system, the R&D engineers are strongly suggested to take, as guideline of selection, the listed criteria below into consideration

 

A. Electrical requirements

 

The input voltage range and required power should be defined for the application, as well as its output voltage and the needed current to power the application:

  • Input voltage range:  the most common input source is an AC source, and the range requirement is related to the destined market of the end devices. In the case of multiple market regions of the Medical system, it is strongly recommended to choose a Medical Power Supply with input voltage range covering at least the range of 100VAC to 240VAC.
  • Power requirement:  the required power depends mainly on the end device. It is suggested to keep in mind the derating caused by the unfavorable working temperature, as well as the potential peak current.

Output voltage and current:  according to the design of the Medical system, some systems demand a constant current output while others need constant voltage. The R&D engineers should choose an adequate Medical Power Supply, with the right level and type of DC output, based on the design of the application.

 

B. Regulations

 

As each market territory and each application field imposes its own safety regulations on the end devices, it is crucial to understand which certifications are mandatory for the application and its target market(s) during the development process.

For instance, home healthcare devices are required to meet the standards of IEC 60601-1-11, while for equipment not directly in contact with the patient, IEC 62368 might still give one the possibility to get a medical certification for medical test and measurement equipment on a system level.

Meanwhile, each country adopts its specific safety standards for the application field (e.g. UL ANSI/AAMI ES60601-1 for the US, EN 60601-1 for EU countries, CAN/CSA-C22 3rd edition for Canada…etc.

 

C. Installation Method

 

The installation of the PSU can be either internally or externally depending on how the Power Supply is designed to be integrated into the system.

External solution:

Internal solution:

  • Medical Enclosed type: PSU with plastic or metal case.
  • Medical PCB type: A PCB populated with components which from the power supply. Normally this solution is without any mechanical protection such as a housing. For this reason, normally installed inside an application and not touchable by the user.
  • Medical On board or Medical PCB mount: PSU designed to fit on a PCB. It can be either “open frame” or “encapsulated”. The second type is potted with compound to provide protection against external elements (e.g. moisture, corrosive elements, shock, vibration…etc.).

 

D. Other requirements

 

Medical systems are regulated with extremely vigorous exigences. On top of the above criteria, it is also important to verify that the other specific requirements are met:

  • Class: Class I or class II
  • Heat dissipation: Forced air cooling (with fan) or Passive cooling (without fan)
  • Level of protection required:  2 x MOOP, 2 x MOPP
  • Leakage current
  • Overload protection: Constant Current Limiting or Hiccup mode
  • Remote on/off function
  • Current sharing function
  • Parallel function

More Information about Medical products?

Specific Requirements for Medical Power Supplies

I. IEC 60601-1:

 

Defined by the world known International Electrotechnical Commission (IEC), IEC 60601-1 is a series of technical standards destined to ensure the safety and performance of electrical equipment in the medical industry. On one hand, some digression from the IEC 60601-1 standards exists. For example, EN 60601-1 for Europe and ES 60601-1 for the US market which are harmonized with the IEC standards. One the other hand, there are also some “collateral” standards to IEC 60601-1; such as IEC 60601-1-2 which is the 4th edition of collateral EMC standards to IEC 60601-1.

 

II. MOOP and MOPP 

 

In the medical environment, risk is constantly present for patient and/or operator of a medical device. Aiming to protect both groups from electrical medical devices, MOOP and MOPP are introduced to monitor the level of insulation.

  • MOOP stands for Means of Operator Protection. This category is related to electronic devices which are handled by trained operators, and do not come into direct contact with the patient. The medical device with 2 x MOOP has an isolation of 3000V AC isolation.
  • MOPP, on the other hand, is the Means of Patient Protection; all electronic devices with direct physical contact with patients must meet stricter standards and require a double isolation between input and output.

Presuming that patients are vulnerable; MOPP standards are specially designed to protect them from any potential electric shock. In the design, MOPP requires the medical devices to have two separate insulation barriers.

Therefore, devices are MOOP and MOPP classified depending on the type of contact with patients and operators.

Classification Required Isolation Required Creepage Requirement Insulation
MOOP 1500V AC 2.5mm
2 x MOOP 3000V AC 5mm Reinforced
MOPP 1500V AC 5mm
2 x MOPP 4000V AC 8mm Reinforced

1 MOOP and MOPP under IEC60601-1 are different in the levels of isolation, creepage, insulation.

III. Low leakage current

 

The essential use of medical equipment is on the human body, therefore the chance and duration of contact with this equipment is higher and longer. Having electric current running throughout the body can be extremely dangerous and might even result in death. For example, a current as low as 40mA could already be fatal to a healthy person, while a weakened person’s tolerance is even lower.

To protect all people in contact with the devices from the electric shock, medical power supplies must meet strict requirements in terms of leakage current. While Applied Parts (AP) indicate the parts of a Medical device or a Medical system which, during normal use, come into direct physical contact with a patient. The standards of IEC60601-1 give a clear definition of the acceptable values of leakage current for each classification of Applied Parts (AP), and the classifications are further divided into 2 categories: “NC” for normal condition and “SFC” for Single fault condition.


Leakage Current
Type B Type BF Type CF
NC SFC NC SFC NC SFC
Earth Leakage Current 5mA 10mA 5mA 10mA 5mA 10mA
Enclosure Leakage Current 100µA 500µA 100µA 500µA 100µA 500µA
Patient Leakage Current 100µA 500µA 100µA 500µA 10µA 50µA

2 Different Leakage Current limits defined by IEC60601-1 according to the medical environment: Type B, Type BF, Type CF

IV. Classification of medical environment

 

Just like medical power supplies, end systems in medical environments are also regulated by strict isolation and leakage current requirements.

Depending on the type of physical contact between patient and medical device, there are three main classification types of Applied Parts (AP) in the medical environment: Type B, Type BF, Type CF.

  • Type B (Body)
    Devices with no direct physical contact with patients. Examples: medical bed, medical laser…etc.
  • Type BF (Body Float)
    Devices with physical contact with patients and might present risk in the case of device failure. Examples: Incubators, diagnostic equipment, etc.
  • Type CF (Cardiac Float)
    Direct contact to the patient’s heart, risk of injury or death in the event of device failure. Examples: Defibrillators, heart-lung machines, etc.

Note: Medical power supplies for type BF & CF devices are designed to meet 2 x MOPP

V. EMC standard and limits

 

Malfunction induced by electromagnetic or interference could be fatal when it comes to life-saving devices. The EMC standards EN 55011 for electromagnetic interference and IEC 60601-1-2 with reference and electromagnetic immunity must be considered.

The 4th edition of the IEC-60601-1 standard on EMC is much more vigorous with electromagnetic immunity than the previous edition. Medical devices must now be immune to HF fields up to 2.7GHz, which represent an increase by 0.2GHz. To prevent damage caused by electrostatic discharge, the limits have also been increased accordingly. For contact discharge, the level has been increased from 6 to 8kV. For air discharge, it has been increased from 8 to 15kV compared to the previous edition.

 

VI. EU Medical Device regulation (MDR)

 

The European Union Medical Device Regulation (MDR) published 2017, will soon replace the current Medical Device Directive (MDD) (93/42/EEC) and the EU’s Directive on active implantable medical devices (90/385/EEC). All development engineers and manufacturers related to Medical Devices within Europe will need to follow the Medical Device Regulation of 2017 published by European Parliament.

 

VII. ISO 13485

 

ISO 13485 is the standard for the quality management system for medical devices. The requirements are destined to organizations involved in the design, production, storage, installation and maintenance of medical devices and other related services.

Got questions?

Look at the section below to find the most frequently asked questions (with answers)
we received in Medical Power Applications.

Yes, MEAN WELL offers All-In-One Intelligent Security Power DRS-240/480 with built-in MODbus protocol as a standard option. The SHP-10K series has as optional model MODbus available. Please contact us if you require this.

Tag: MODbus

Yes, MEAN WELL products are registered in SCIP. To get such information for specific power supply, please follow the steps below:

  1. Go to https://echa.europa.eu/en/scip-database
  2. Under SEARCH option, choose „Article Identity” and write down model name e.g. RSP-1600.
  3. As “Identifier type (optional)”, please chose “Other”
  4. Click “Search” button
Tag: SCIP

The declaration of Five PBT TSCA Conformity can be found on the last page of Installation Manual e.g. below:

Tag: EPA-TSCA

No, they are different. SELV means the LED driver will use a safety isolating transformer with double or reinforced insulation and the output voltage shall not exceed 120Vdc.
This is good for the end product safety certified if the LED driver with SELV output.

Tag: SELV

MOOP stands for Means of Operator Protection. This category is related to electronic devices which are handled by trained operators, and do not come into direct contact with the patient. The medical device with 2 x MOOP has an isolation of 3000Vac isolation

MOPP, on the other hand, is the Means of Patient Protection; all electronic devices with direct physical contact with patients must meet stricter standards and require a double isolation between input and output.
For more information, you can find in our medical application section: Medical

Categories: Compliance, Medical

The requirement of LPS is from IEC60950. It means the product output shall not exceed 60V/8A/100W under the normal and abnormal condition.
If the power supplies can meet LPS, the end product does not need the fire enclosure.

Categories: Compliance, Industrial
Tag: LPS

MEAN WELL aims to design the power supply in such way that there is sufficient margin for your system to pass the EMC requirements on system level. However we cannot guarantee that the final system can still meet the EMC requirements. The location, wiring and grounding of the switching power supply in the system may influence its EMC characteristics. In different environment or applications, the same switching power supply may have different outcomes. Our test results are based on setup shown in the EMC report.

Categories: Compliance, Industrial, Medical

The definition of SELV was defined in the IEC 60950 standard but it is not defined in the  IEC 62368 standard. This has been replaced with the ES1 Energy sources definition.

The definition of SELV is still applicable to the 61347-2-13 standard. In this standard it is that a LED driver will use a safety isolating transformer with double or reinforced insulation and the output voltage shall not exceed 120Vdc.

In the specification MEAN WELL’s 61347-2-13 certified LED drivers are marked with the SELV symbol in the case that the SELV requirements are fulfilled:

Tag: SELV

MEAN WELL has a global safety team. Case by case it might be possible to apply for additional certifications for certain of our products. Please discuss the possibilities via your local Mean Well sales channel. If you are unable to get the support, please contact us via this website.

Category: Compliance

MEAN WELL’s EMC reports are not available online. In case you need these reports to validate your design with your certifying body, please contact your local MEAN WELL sales channel for support. If you are unable to get the support, please contact us via this website.

Category: Compliance
Tag: EMC report

MEAN WELL’s safety reports, IEC reports and CB reports are not available online. In case you need these reports to validate your design with your certifying body, please contact your local MEAN WELL sales channel for support. If you are unable to get the support, please contact us via this website.

Tag: CB reports

MEAN WELL’s User Manual can be found on www.meanwell.com
1. Go to products
2. Click on Installation Manual

3. Scroll down to find the user manuals for the different product families.

MEAN WELL’s Safety certifications can be found on www.meanwell.com

  1. Use the search function on the website
  2. Fill in the series number in the search field (do not include the last extentions suchs as -12 in XLG-150-12
  3. Click the search button

4. Click on the PDF Link

5. Click on the top on the certificate
6. All available certificates are shown and will show up once clicked upon

MEAN WELL’s CE declarations can be found on www.meanwell.com

  1. Use the search function on the website
  2. Fill in the series number in the search field ( do not include the last extentions suchs as -12
  3. Click the search button

4. Click on the PDF Link

5. Click on the top on certificate
6. Click on CE declaration

Select (1) Products followed by (2) downloads

MEAN WELL’s EMI test guide can be found on  www.meanwell.com

Select (1) Products followed by (2) Downloads

After this scroll down to find the EMI testing of Power guide

Or you can use this link to directly download the EMI testing guide:
EMI_statement_en.pdf

Tags: EMC, EMI

MEAN WELL’s RoHS and Reach statements can be found on www.meanwell.com

Select (1) Products followed by (2) Downloads:

After this scroll down to find the RoHS declaration and Declaration of SVHC/ REACH conformity:

Or you can use the below links to download the declarations:

REACH SVHC Delaration.pdf

RoHS_PFOS.pdf

MEAN WELL’s Declaration of Conflict Free Minerals can be found on www.meanwell.com

Select (1) Products followed by (2) Downloads

After this scroll down to find the Declaration of Minerals Conflict Free

Or you can use this Link to directly download the EMI testing guide:

Download the EMI testing guide